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FLOW FIELD MODELLING NEAR A WELL WITH 
A CONDUCTIVE FRACTURE 

Y. C. LI A N D  N. C. HUANG 
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, U S A .  

SUMMARY 
In the technology of oil recovery the oil production rate can be increased by generation of a vertical 
sand-filld conductive fracture on the wall of the well. Oil diffuses through the conductive fracture to the well. 
In this paper the seepage flow and isothermal deformation fields in both the formation and fracture and the 
oil production rate at the well are studied by modelling the formation as an infinite poroelastic medium 
saturated with a one-phase compressible fluid. The fracture is treated as a one-dimensional poroelastic 
medium. Darcy flows are considered in both the formation and fracture. The plane strain condition is 
imposed. Our solution is obtained numerically by a finite element method based on a variational principle. 
The accuracy of the analysis is studied by comparison of the numerical solutions of some problems with their 
analytical solutions. Since we are dealing with the transient flow problem of an infinite region, an 
extrapolation technique is employed to find the finite element solution. The production rate of a well with 
the conductive fracture is compared with that of a well without the conductive fracture. 
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INTRODUCTION 

Analysis of the flow field in an oil-bearing formation near a production well is important in the 
study of hydraulic fracture growth and in the determination of the relationship between the oil 
production rate and the applied pressure in the well during oil recovery. The simplest problem of 
primary oil recovery deals with a single well at the centre of a cylindrical porous medium. If the 
deformation of the medium is ignored, the flow field in the formation is governed by a diffusion 
equation. Its analytical solution has been used to predict the oil production rate and the flow field 
in the reservoir. When the permeability of the reservoir is low, the hydraulic fracture technique 
can be used to increase the production rate. In this technique a high pressure is applied to the 
production well through the injected fluid to generate a crack. The injected fluid carries highly 
permeable material, e.g. sand, which displaces into the crack with the fluid. As the applied 
pressure is removed, the sand remains in the crack to form a sand band which keeps the crack 
open. The production rate can be raised owing to the increase in diffusive area from the 
conductive crack. 

In the following we shall consider the pressure transient behaviour of a hydraulically fractured 
well. Our model consists of a fully penetrating vertical well located at the centre of a fully 
penetrating vertical fracture. At present, several exact and approximate analytical solutions can 
be found in the literature for determination of the effect of the conductive fracture on well 
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performance and transient pressure behaviour. In these studies the coupling effect of the 
deformation of the medium and the flow field in the medium is neglected. Gringarten et af.’ 
presented a type-curve analysis and found three basic solutions: (i) the infinite fracture conduct- 
ivity solution associated with the uniformly distributed applied pressure along a vertical fracture, 
(ii) the uniform flux solution for a vertical fracture and (iii) the uniform flux solution for 
a horizontal fracture. Kucuk’ and Kucuk and Brigham3 considered the problem of elliptical flow 
in an infinite and undeformable reservoir with an elliptical inner boundary. The initial pressure in 
the reservoir is uniform and the inner boundary of the medium is subjected to a prescribed, 
uniformly distributed pressure. Elliptical co-ordinates and the Laplace transform technique are 
used in their analysis. Their solution of pressure distribution is expressed as an infinite series of 
inverse Laplace transforms of Mathieu functions. Production rates are found for different 
prescribed constant pressures under different times. For the case of finite fracture conductivity 
a solution has been obtained by Cinco-Ley et aL4 In their solution the crack is assumed to be 
rectangular with an impermeable crack tip. The effect of crack width is ignored when the pressure 
diffusion in the medium is studied. The flow flux through the well wall is also neglected. Hence all 
the flow into the well stems from the conductive fracture. The solutions of the pore pressures in 
the medium and conductive fracture can be expressed as integral equations using Green and 
source functions. These integrals include the flow flux density across the crack surface. The 
integration is taken along the crack line and with respect to time. With the use of the continuity 
conditions of pressure and flow flux density on the crack surface, the two solutions can be 
combined into a Fredholm integral equation where the only unknown is the flow flux density. 
This integral equation is then solved by discretization of the flow flux density in time and space. In 
this solution the flux density is assumed to have a stepwise distribution in time and space. 

In this paper, problems of determination of deformation and flow fields in an infinite medium 
containing a single production well with/without a conductive crack will be considered. The 
theory of linear and isotropic poroelasticity given by Biot’ for modelling a fluid-saturated porous 
rock is employed in the analysis. The variational principle based on Biot’s field equations is 
presented and the finite element method for pressure-deformation coupled problems given by 
Huang et aL6 is used for simulation of the oil flow field. Useful information is obtained for 
prediction of oil production rate, flow field and deformation field near the production well. 

GOVERNING EQUATIONS AND VARIATIONAL PRINCIPLE 

For the porous medium 

Let us consider a homogeneous and isotropic poroelastic medium saturated with a single phase 
compressible fluid and subjected to a small deformation. The governing equations for a three- 
dimensional isothermal medium are given by Biot’ as follows: 

strain-displacement relations, 
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equation of conservation of mass, 

Darcy’s law, 

where ui is the displacement vector, cij  is the strain tensor, aij is the stress tensor, p is the change in 
pore pressure above the confining pressure, ui is the flow velocity of the liquid in the porous 
medium, 0 is the increase in fluid content as the result of a change in pore size, K is the 
permeability coefficient, c is the compressibility of the fluid, 1 is the poroelastic constant, Hijkl is 
the stress-strain relation tensor, d i j  is the Kronecker delta, ( ) , i  = a( ) /ax i  and [ )=a(  )/at. Note that 
the body forces of the medium and fluid are ignored. The permeability coefficient K is related to 
the permeability k by 

K = k / ( W ,  (7) 
where 4 is the porosity of the medium and ,u is the dynamic viscosity of the fluid. For an isotropic 
medium the stress-strain relation tensor Hijkl can be expressed by 

where G is the shear modulus and v is Poisson’s ratio. Equations (4)-(6) can be combined into 

-Kp , i i  + 1 i i i  + C @  = 0. (9) 
Note that if A=O, equation (9) reduces to a typical diffusion equation of the pore pressure. 

The porous medium occupies a volume V with a surface S. The boundary conditions are 

u i = u f  on S , ,  (10) 

a i j n j = P :  on S,, (1 1) 
p = p *  on S,, 

uini=VX on S,, 

where S ,  + S,= S,+ S ,  = S and ni is the component of the outward unit normal to the surface. All 
the starred quantities are the corresponding prescribed quantities on the boundaries. They are 
regarded as time-dependent. Assuming that the boundary conditions are applied gradually, the 
initial conditions at t =O+ are 

Our variational principle is established on the basis of the Laplace-transformed quantities. In 
the following we shall denote the Laplace-transformed quantities by an overbar. Let us consider 
the following functional of the Laplace-transformed quantities: 

where s is the variable of Laplace transformation. It can be shown that among all U i  and 
p satisfying the Laplace-transformed strain4isplacement relation (1) and boundary conditions 
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(10) and (12), the actual solution of Ui and p would make @ stationary, i.e. the first variation of 
0 satisfies 

6@ = 0. (18) 

For the plane strain problem the foregoing governing equations and variational functional still 
hold, but all material constants should be replaced by the corresponding quantities in the plane 
strain case.6 Also, the volume integrals and surface integrals should be replaced by the area 
integrals and contour integrals respectively. 

For the fracture 

When the pressure in the injected fluid is higher than the in situ stress, an initial fracture can be 
generated. The fluid in the fracture contains sand. As the applied pressure is removed, the sand 
carried by the fluid will remain in the formation to form a conductive fracture. In the following we 
assume that this procedure is completed in a sufficiently short time. Therefore a problem with non- 
zero initial displacement and pressure fields can be formulated. 

Let us consider a plane strain problem in a Cartesian co-ordinate frame with the origin at the 
well-bore. The initial fracture is located on the xl-axis from x1 = - a  to x1 =a. The governing 
equations (1)-(6) still hold in the conductive fracture, but all material constants are denoted by 
adding a subscript ‘f‘ referring to the constants of the fracture. Since the crack is narrow, the flow 
in the fracture can be considered to be one-dimensional and the strain components E~~ and e12 
can be neglected in comparison with the transverse normal strain E ~ ~ .  Correspondingly, the stress 
components a1 and ql2 can also be neglected. After integration of equations (3)-(6) through the 
width of the crack it is found that 

a22 + lf P = E f ~ t 2 ,  

0 = Izf E22 + Cf p ,  

Ul, 16 + 6 6  + 2U” = 0, 

(19) 

(20) 

(21) 

v 1 =  --KfP,l, (22) 

where u, is the leak-off velocity, which is positive for the outward flow of fluid into the medium, 
6 is the crack-opening displacement and Ef is Young’s modulus of the sand-filled conductive 
fracture. Equations (20)-(22) can be combined into 

6( - Kf p,11+ At222 + cf p) + 2 ~ , = 0 .  (23) 

If the upper half-plane is taken into consideration, the traction on the fracture surface is 
T2 = - a22. Since the change in 6 is small, the value of 6 can be approximated by the initial 
crack-opening displacement a0. The transverse strain can be expressed by 

Thus, equations (19) and (23) become 

The leak-off velocity u, can be expressed as 
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The boundary conditions are 
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a a 
ax 1 ax 1 

Kf - p ( a - ,  0; t ) = K  - - (a+,  0; t )  for x1 = a  

and either 

p(rw, 0; t)=pw for xl = r w  

when the applied pressure at the well is prescribed or 

a 
-2Kf60-p(rw, 0; t ) -  8; t)rwd8=qw for x1 -rw 

8x1 

when the production rate is prescribed, where 8 is the polar angle. In equations (27)-(30) rw is the 
radius of the well, pw is the prescribed applied pressure at the well and qw is the prescribed 
production rate per unit height of the formation. On the left-hand side of equation (30) the 
integral term denotes the flow rate across the well wall and the other term is the flow rate from the 
conductive fracture. 

COMPUTATIONAL SCHEMES 

In our finite element method the variational equations (17) and (18) are converted to a set of linear 
algebraic equations. After inverse Laplace transformation these equations include time derivat- 
ives of nodal displacements and pore pressure. These derivatives will be evaluated by two-step 
backward finite difference expressions. The flow equation (26) for the fracture can be partitioned 
into a set of finite difference equations which are coupled with the set of finite element equations. 
The two sets of equations will be solved simultaneously. 

For the finite elements in the immediate vicinity of the crack tip, as a result of the inverse square 
root singularity in stress and strain components, the interpolation functions for the displacement 
components take a singular form suggested by Rice and Tracey'. For other elements the values of 
displacements in elements are expressed by a regular four-node isoparametric interpolation of 
their nodal values. The interpolation formula for the pore pressure also takes the regular from for 
all elements in the entire region. 

For any transient and infinite region problem the finite element solution with the infinite region 
replaced by a finite region is accurate only for sufficiently small time. In this paper the numerical 
solutions for large time will be derived by an extrapolation method. In this technique we first use 
the finite element method to find a group of solutions for the problems in the finite regions. Let 
R be the radius of each finite region. Set <= 1/R2. The calculated quantities can be treated as 
functions of c. The solution for the infinite region problem at any time can be extrapolated at 
t = O .  Let z stand for some kind of solutions for a finite region of radius R. The extrapolation 
function is chosen to have the form 

~ = a ~ t ~ + a z < ~ + a 3 ,  (3 1) 
where a,,  az and a3 are constant coefficients. This extrapolation function has a feature that the 
derivative dz/dt is equal to zero at < =O. It can be shown by the Laplace transform technique that 
in the problem of radial pressure diffusion the quantity R3dp/dR has a zero limiting value when 
R approaches infinity. This condition is equivalent to dp/d< =O at t = 0 for any fixed time. Thus 
equation (31) is justified. The three coefficients al ,  az and a3 in equation (31) can be determined by 
the three values of z at the three trial values of 5. In the deformation-flow coupled problem we 
expect that the pore pressure behaves the same as in the uncoupled problem. Hence equation (31) 
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can be utilized for extrapolation. The other physical quantities are intimately related to the pore 
pressure and can also be evaluated by extrapolation with equation (3 1). 

TEST PROBLEMS 

To investigate the accuracy of our finite element method, two test problems are considered. Since 
the analytical solutions for the deformation-flow coupled problems are not found, our compar- 
ison of the finite element solution with the analytical solution is restricted to the uncoupled case 
where the effect of deformation is ignored. 

The first problem is a pressure diffusion problem in a long hollow cylinder with prescribed 
inner and outer pressures as shown in Figure 1. The analytical solution of the uncoupled problem 
is given in Appendix I. Both analytical and finite element solutions are shown in Figure 2. Note 
that in the analytical solution the applied pressure on the inner boundary is a step function of 
time. It jumps from zero to a certain constant value initially. However, in the numerical solution 
the step function is replaced by a linear function of time in the first timq step. Therefore at early 
time there is a large difference between the two solutions. However, this difference reduces rapidly 
with increasing time. 

The second problem is a pressure diffusion problem in an infinitely large medium with a finite 
conductivity fracture. The analytical solution of the uncoupled problem is given by Cinco-Ley et 
aL4 In our finite element solution we deal with the problem of diffusion into a rectangular crack 
with an impermeable crack tip, which is identical to the problem studied by Cinco-Ley et al. Our 
numerical method is given in Appendix 11. Different finite element lay-outs with variable mesh 
sizes are adopted in our computation. The finite element mesh is shown in Figure 3. The finite 
element solution for the pressure drop under constant production rate is compared with the 

\ 

Figure 1. Geometry of the first test problem 
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Figure 2. Comparison of the analytical solution of the pore pressure with the FEM solution in the first test problem 

analytical solution in Figure 4. It is found that the pressure drop curves in these two solutions are 
essentially parallel. At early time the difference can be greater than lo%, but at later time the 
difference is less than 5%. The reason for the difference between Cinco-Ley et d.'s solution and 
the finite element solution can be explained as follows. (i) The analytical solution of Cinco-Ley et 
al. is also obtained numerically. A stepwise interpolation function for the flow flux density in the 
fracture in both space and time is applied. Hence the accuracy of their analytical solution depends 
on the numerical techniques. (ii) In the solution of Cinco-Ley et al. the prescribed production rate 
qw is a step function of time. Such a step function of time cannot be generated in our finite element 
solution. It is replaced by a linear function of time in the first time step. Therefore a large 
difference between the two solutions exists at early time. However, it is found that the difference 
decreases with time. At large time the difference becomes so small that it does not have any 
engineering significance. 

A SINGLE WELL IN AN INFINITE MEDIUM 

Let us consider the problem of transient flow in the vicinity of a production well with radius rw in 
an infinite isothermal medium. We assume that there exist initial confining stresses oyl and oFz, 
an initial pore pressure po  in the medium and a constant applied pressure pi in the production 
well. The solution of this problem can be obtained by a superposition of two solutions of 
problems as shown in Figure 5. Solutions of stress field and pore pressure field in the first problem 
are a uniform stress field o1 = oyl, oZ2 = oFZ and ol2 = 0 and a uniform pore pressure field p = p o .  
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Solutions in the second problem will be obtained by the finite element method. The boundary 
conditions and initial conditions for the second problem are 

PI =(oT1 -pi) cos 0 and P z  =(oTz-pi) sin0 for r = r w ,  (32) 

u l = u 2 = 0  for r-my (33) 

p(rwy t)=pw=pi-po and p(m, t ) = O  for t > O ,  (34) 

p ( r ,  O)=O. (35) 
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Figure 4. Comparison of the analytical solution in Reference 4 with the current FEM solution 

As we have mentioned previously, owing to the diffusion of the pore pressure, our finite element 
solution at large time is inaccurate if we replace an infinite region by a finite region with the 
boundary conditions of equations (33) and (34) applied to the outer boundary. In this study 
a moderately large region will be used to replace the infinite medium. Since a direct employment 
of the boundary condition at infinity for the outer boundary of the finite region will cause a large 
error, the uncoupled solutions of pore pressure field in an infinite medium are used for the outer 
boundary conditions of the finite region. This approach is reasonable for the material point at 
a location far from the well, where the deformation of the medium is too small to have any 
influence on the pore pressure distribution. 

For the case of uncoupled diffusion of pore pressure the governing differential equation for the 
pressure drop p ( r ,  t )  in an axisymmetric region is a standard diffusion equation for the pressure in 
an axisymmetric region in the polar co-ordinate system. It is 

where q is the diffusivity of the medium and is defined by q = k/c. With the use of the boundary 
condition, equation (34), and the initial condition, equation (39 ,  the solution of equation (36) for 
any r is given by Jaeger* as 
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where Jo and Yo are respectively the first and second kinds of Bessel functions of order zero and 

As suggested by Jaeger, the range (0, 03) of the integral in equation (37) can be divided into two 
parts, (0,0.2) and (02, 00). The integral of the first part can be evaluated on the basis of an 
ascending series expression of the integrand, while the integral of the second part can be 
calculated directly. 

A large annular domain with inner radius rw = 0.25 ft and outer radius R = 180 ft is considered 
in the finite element calculation. The confining stresses are t~ Tl = -2000 psi and cF2 = - 1500 psi. 
The initial pore pressure is p o  = 800 psi. The applied pressure in the production well is pi = 100 psi. 
The physical constants are given as follows: 

V - 0.1765, G = 1.253 x 10' psf, v=0-15, vp=-- 1 -v  

Ap = 0.6372, cP=0*34 x lo-' psf-', 
K=4453 x lo-' ft2 psf-' day-', 
k=0*2152x 10-'4ft2=0.1957 md, 4=0.2, p=0.145 x psi s, (39) 

q =  13.1 x lo3 ft2 day-', 

where the subscript 'p' denotes the case of plane strain. On the outer boundary r = R, pressures at 
different times are determined by equation (37) while the displacement is zero. 
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Figure 6. Distribution of the pore pressure in the infinite medium 
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The pore pressure distributions in the medium at different times are shown in Figure 6. It is 
seen that the pore pressure increases rapidly near the production well. At t = loo0 days the pore 
pressure at r =  180 ft is about 70% of the initial pressure. The distributions of the stress 
component ae(r, 0) at t=0-2,10 and lo00 days are shown in Figure 7. It is found that in the 
vicinity of the well the magnitude of bg(r, 0) increases rapidly owing to the effect of stress 
concentration. At a location with a sufficiently large distance from the well the magnitude of the 
stress can be smaller than that of the confining stress or2. However, in the region far from the well 
the stress approaches the confining stress asymptotically. Therefore hydraulic fracture can be 
generated near the well as the injected fluid is pumped into the well. Figure 8 shows that the 
production rate always decreases with increasing time and the rate of decrease becomes slow as 
time increases. After 5-10 years of production the production rate is only about 60% of the initial 
production rate. 

Figure 9 shows the coupled and uncoupled solutions of the pore pressure in the medium. No 
noticeable difference between them is found. It is evident that in the case of a single well in an 
infinitely large medium, under our prescribed material constants, the deformation of oil forma- 
tion has only negligible influence on the pore pressure distribution. 

1 I 1 I 1  1 1 1 1  1 1 1 1 l l l l l  1 1 1 1 1 1 1 1 1  I 1 1 1 I I I L  

A FINITE CONDUCTIVITY FRACTURE IN AN INFINITELY LARGE MEDIUM 

Let us consider a fully penetrating vertical fracture of length 2a with a well located at the centre. 
All material constants are given in equation (39). The in situ stresses and the initial pressure in the 

I 
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Figure 8. Curve of production rate q,, versus time t for the problem without the conductive fracture 
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Figure 9. Comparison of coupled and uncoupled solutions of pressure distribution 
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reservoir are the same as those used in the previous problem. The pressure applied to the well 
exceeds the in situ stress by 143.3 psi, generating a crack with a crack-mouth-opening 
displacement of 4 inch at the well-bore. As it drops to 100 psi afterwards, the opened crack is 
retained by the sand in the fracture. This procedure of crack opening and sand filling is completed 
in such a short time that we may consider that it takes place instantly. Thus we have an initial 
value problem. It consists of two steps as shown in Figure 10. In the first step (Figure 10a) an 
inner pressure pi = 1643.3 psi is applied to the crack surface and the wall of the well. This step can 
be regarded as a superposition of two problems. The first problem has the solution of a uniform 
stress field o1 = -2000 psi, q22 = - 1500 psi and ol2 =O and a uniform pore pressure field 
p = 800 psi. In the second problem the pore pressure is zero everywhere except at the crack surface 
and the well wall, where the pore pressure is 843.3 psi. The deformation in the second problem 
can be obtained by the finite element method. In the second step (Figure lob) the applied inner 
pressure drops to 100 psi and the crack is filled with sand. This step can also be divided into two 
problems. Although the geometry and loading condition are different from those in the first step, 
the solution of the first problem of the second step still gives uniform fields of stress and pore 
pressure which are the same as in the first step. In this analysis the solution of the second problem 
of the first step is used as the initial condition of the second problem of the second step. The final 
solution of the second step can be obtained by superposition of these two problems. 

With a crack 

----- without crack 

-.- with a crack 
and without 
deformation 
ell ect 

\ 
. -- - '. -- -- '. . 

L 1 1 1 1 1 1 1 1  1 I L l l l l l l  1 1 1 1 1 1 1 1 1  I 1 1 1 1 1 1 1 1  I 1 I l 1 l U  

.1 1 10 100 1000 lo000 

Time t (days) 
Figure 11. Curves of production rate q., versus time t for the problem with a conductive fracture 
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The following material and geometrical constants of the conductive fracture are employed in 
our computation: 

Kf=0.04453 ft2 psf-' day-', 

Ef = 0.1 566 x lo9 psf, 
If = 0.5012, cf=O.225 x lo-' psf-', 

kf=0.2152~ lo-" ft2= 195.7 md, 

(bf = 0.2, h=0.145 x psis, a = 100 ft. (40) 
The finite element mesh is shown in Figure 3. The numerical results are shown in Figures 11-21. 
Figure 11 shows that the production rate qw decreases with increasing time for a prescribed 
constant applied pressure. At early time the production rate is about twice that without the 
conductive crack. Even at t = lo00 days the former is still about 1.2 times as large as the latter. It is 
found that nearly 96% of the production rate stems from the conductive crack. The pore pressure 
distributions on the xl- and x2-axes are shown in Figures 12-14, which indicate that the pore 
pressure approaches its initial value p o  when the location is further from the well. Figures 15-18 
show the distributions of stresses and 622 on the xl- and x2-axes, where the effect of stress 
concentration at the crack tip and on the wall of the well can be seen. The stresses approach the in 
situ stresses when x1 and x2 approach infinity. As a result of decreasing pore pressure with time, 
the load transfers to the skeleton and the magnitude of stresses increases with time. Figures 19 
and 20 show the distributions of displacement ul on the x,-axis and displacement u2 on the 
x2-axis. At early time both u1 and u2 are approximately zero near the well. At later time, as 
a result of the diffusion of the pore pressure, these displacements have large values in large ranges 
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Figure 12. Distribution of the pore pressure p on the crack surface 
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Figure 14. Distribution of the pore pressure p on the x,-axis 
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of x1 and xz. In the calculation it is found that the crack profile has only a small difference from 
the initial crack profile, although the transverse strain cZz in the crack and the traction Tz are 
large. Figure 21 shows the distribution of the traction Tz on the crack surface, where the effect of 
stress concentration is seen on the wall of the well. This traction must maintain at a certain level 
in order to prevent the sand from flowing with the liquid. 

If the poroelastic constants I and 4 are set to zero, our problem degenerates to an uncoupled 
pure diffusion problem. The production rate is also shown in Figure 11 and is compared with that 
of the coupled problem. Differences of nearly 4% at early time and 10% at later time are found. 

CONCLUSIONS 

In this study the variational principle of Huang et aL6 is applied to develop a finite element 
method for analysing transient deformation-pore pressure coupled problems for wells 
with/without finite conductivity vertical fractures. Comparison of the numerical results with 
theoretical results demonstrates the accuracy and reliability of the method. The following 
conclusions can be drawn from our study. 

1. For non-zero in situ stress and initial pore pressure fields the problem can be resolved into 
two problems. One of them has the solution of uniform stress and pore pressure fields. The 
other can be solved by means of the finite element method. The real solution of the problem 
can be obtained by superposition of these two problems. 

2. For the problem of a well in an infinite region without the conductive crack the infinite 
region can be replaced by a finite large annular region with the centre at the well. The 
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3. 

4. 

5. 

The 

boundary condition on the outer boundary of the annular region can be determined by the 
analytical solution for transient pressure behaviour in the infinite region of an uncoupled 
problem. The computational results demonstrate that there is no noticeable difference 
between the transient pressure behaviour and the coupled transient deformation-pressure 
behaviour. 
For the problem of a well in an infinite region with a finite conductivity crack our 
investigation presents a realistic model and demonstrates a powerful technique. We first 
obtain the solution for finite large regions. The outer boundary of the region in each 
solution is a circle of radius R concentric with the well. The solution for the infinite region 
can be determined by the limiting case of l/RZ approaching zero, which is computed by 
extrapolation of the solutions for finite regions with different values of 1/R2. Our computa- 
tional results indicate that the extrapolation is well behaved. The extrapolation function has 
zero slope at 1/R = 0. 
Our analysis indicates that the conductive crack plays an important role in increasing the oil 
production rate. Most oil production is derived from the conductive crack. 
Our investigation demonstrates that for the conductive crack problem there is only a small 
difference in oil production rate between the transient pressure problem and the coupled 
transient deformation-pressure problem for a prescribed constant applied pressure at the 
well. However, with different physical constants the picture may change. For large values of 
the poroelasticity constants 1 and 4, the difference between the coupled and uncoupled 
solutions can become noticeable. 
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APPENDIX I: PRESSURE DIFFUSION PROBLEM IN A HOLLOW CYLINDER 

Let us consider the problem of axisymmetrical and uncoupled pressure diffusion in a long 
cylindrical region. Denote the inner radius of the cylinder by a, the outer radius by b, the inner 
pressure by pa and the outer pressure by Pb. The analytical solution is found in Reference 9 as 

where a, (n= 1,2, . . .) are the roots of the equation 

Jo(aa)Yo(ba)- Jo(ba)Yo(aa) =O. 

q = K/c .  
The diffusivity coefficient is 

(42) 

(43) 
The problem is also solved by the finite element method. Because of axisymmetry, only the first 

quadrant needs to be considered. The element mesh consists of a set of concentric circles. There 
are eight element layers in the radial direction of the domain. Each layer includes four 
isoparametric elements. There are 32 elements and 45 nodal points in total. On the boundaries 
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xl=O and xz=O the normal gradient of the pore pressure is zero as a result of axisymmetry 
(Figure 1). The diffusivity coefficient, the size of the hollow cylinder, the boundary conditions and 
the initial conditions are prescribed as 

q = 0.8434 ft2 day- (44) 
a = 0.25 ft, b= 1.8 ft, (45) 

p,,(t)= -7OOpsi and pb(t)=O for t>O, (46) 

p(r,  0) = 0. (47) 

The aforementioned computational scheme is used for the problem. The time increment 
At=O.l day is chosen in the calculation. Both numerical and analytical results of the pore 
pressure are shown in Figure 2. 

APPENDIX 11: TRANSIENT PRESSURE BEHAVIOUR FOR A FINITE 
CONDUCTIVITY FRACTURE 

The governing differential equation in the reservoir is a typical diffusion equation, which is 

In the conductive fracture the governing equation is 

bf Kf P.ii = bf cf P + 2vn, (49) 

where bf is the width of the conductive crack. On the crack surface and at the crack tip the 
pressure and flow velocity are continuous. Thus the leak-off velocity can be expressed by 

for rw<xl <a. 

Let us consider a finite large circle of radius R concentric with the well. A finite rectangular 
crack is extended from the well-bore and located on the x,-axis from x1 = -a  to x1 = a  with 
a width bf and an impermeable crack tip. Because of the symmetry in geometry, only the first 
quadrant of the circle needs to be considered. Assuming (i) a prescribed constant flow rate per unit 
height of the formation qw in the production well, (ii) an impermeable well wall and (iii) zero 
pressure on the outer boundary of the region, the boundary condition of the reservoir can be 
written as 

p(xl, x2; t )=O for r = R ,  (53) 

(54) ap(xl’ x2’ t ) = O  for r=rw (except at the opened crack mouth). 
an 

The initial condition is 

P h ,  xz; O)=O. (55)  
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Table I. Main parameters of the finite element mesh 

Radius of domain R Number of elements Number of nodes 
(ft) 

3125 
3906 
4883 

128 
136 
144 

141 
150 
159 

For the conductive fracture the boundary conditions are 

which are also used by Cinco-Ley et aL4 Under these assumptions and conditions our problem is 
the same as that of Cinco-Ley et al. 

In order to compare our finite element solution with the solution of Cinco-Ley et al., we 
introduce the following dimensionless quantities and parameters as given in their analysis: 

P D = ( ~ ~ K / ~ w ) @ O - ~ ) ,  x ~ D  = xda, tD=(V/a*)t, (57) 

FD = kf bf / (ka), (58)  

VfD= V f h ,  (59) 

where pD is the dimensionless pressure drop, FD is the dimensionless fracture conductivity and VfD 

is the dimensionless fracture diffusivity. The subscript ‘ D  refers to the dimensionless quantities. 
Note that the dimensionless quantities pD and tD in equation (57) are the same as those used by 
Cinco-Ley et al. Constant multipliers are introduced in Cinco-Ley et al.’s non-dimensional 
quantities for the purpose of conversion of units. 

The finite element mesh for a large finite domain is shown in Figure 3. In the vicinity of the 
crack tip and the well a spider’s-web-shaped mesh is used. The solution for an infinitely large 
domain can be obtained by the aforementioned extrapolation method. In our algorithm three 
values of the radius R of the outer boundary of the domain are considered. The corresponding 
element and node numbers are shown in Table I. 

The dimensionless pressure drops in the well, pwD, in both our finite element solution and 
Cinco-Ley et al.’s analytical solution are computed for FD=0.2?t and VfD = 00 (cf=O, i.e. for the 
case of incompressible flow in the fracture). The material constants K, k and 7 for the porous 
medium given in (39) and for the conductive crack in (40) are employed in the calculation. Note 
that the crack width bf is not an independent quantity. It has to be determined by equation (57) 
for prescribed values of FD, Kfy K and a. The results for pwD of our finite element solution are 
evaluated as a function of the dimensionless time t,,. Our finite element solution is compared with 
Cipco-Ley et aL’s analytical solution4 in Figure 4. 
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